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1. MONITORING SYSTEM 

STUDY DESCRIPTION 

  
This case study is the fourth of five performed by the project team in order to 

validate the approaches to travel time reliability monitoring described in the Travel Time 
Reliability Monitoring Guidebook. The goal of each case study is to illustrate how agencies 
apply best practices for: monitoring system deployment; travel time reliability calculations; 
and agency use and analysis of the system.  To accomplish this goal, the team is 
implementing prototype travel time reliability monitoring systems at each of the five sites.  
These systems take in sensor data from a variety of transportation networks, process this 
data inside a large data warehouse, and generate reports on travel time reliability for 
agencies to help them better operate and plan their transportation systems.  This case 
study consists of the following sections: 

 Monitoring System 

 Methodological Advancement 

 Use Case Analysis 

 Lessons Learned 
 
These sections map to the master system components, as shown below in Figure 1-1. 

 

 

Figure 1-1: Travel Time Reliability System Description 
  
This monitoring system description section details the reasons for selecting the 

Atlanta region as a case study and provides an overview of the region.  It briefly 
summarizes agency monitoring practices, discusses the existing sensor network, and 
describes the software system that the team used to analyze the use cases. Specifically, it 
describes the steps and tasks that the research team completed in order to transfer data 
from the data collection systems into a travel time reliability monitoring system.  
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The section on methodological advancement leverages methods developed in 
previous case studies to propose a framework for analyzing the impacts of non-recurrent 
congestion on a given facility’s operating travel time regimes.  

Use cases are less theoretical, and more site specific. The first use case details 
the challenges of leveraging ATMS data to drive a travel time reliability monitoring system. 
The second use case compares the results of analyzing congestion with agency-owned 
infrastructure-based sensors and third-party provider speed and travel time data.  

Lessons Learned summarizes the lessons learned during this case study, with 
regard to all aspects of travel time reliability monitoring: sensor systems, software 
systems, calculation methodology, and use.  These lessons learned will be integrated into 
the final guidebook for practitioners. 

  
SITE OVERVIEW 

The team selected the Atlanta Metropolitan Region to provide an example of a 
mixed urban and suburban site that primarily relies on video detection cameras for real-
time travel information. With a population of five and half million people, Atlanta is the 9th 
largest metropolitan area in the U.S. The layout of the freeway network follows a radial 
pattern. The core of the city is encircled by a ring road (I-285, known locally as “the 
Perimeter”), which is intersected by a number of interstates and state routes that radiate 
from downtown Atlanta into its outlying suburbs. Major radial highways include I-75 and I-
85, which merge together to form a section of freeway called the “Downtown Connector” 
within the I-285 loop, I-20, which is the major east-to-west freeway in the region, and GA 
400, which travels from north of downtown toward Alpharetta. A map of the major freeway 
facilities in the region is shown in Figure 1-2. The metropolitan freeway network also 
contains 90 miles of HOV lanes that operate 24 hours a day, 7 days a week on the 
following facilities: 

 I-75 inside the I-285 loop 

 The Downtown Connector 

 I-20 east of the Downtown Connector 

 I-85 between Brookwood and SR 20 

Additionally, on October 1, 2011, GDOT opened its first express lanes in the state of 
Georgia, which are operational on I-85 from I-285 to just south of the GA 365 split. The 
agency is also planning to deploy express lanes on I-75 north of Atlanta in 2015.  
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 Atlanta’s growing congestion is a major concern to GDOT and other agencies in 
the region. In 2008, the Atlanta region was granted $110 million by the USDOT for a 
Congestion Reduction Demonstration Program (CRD). Under this agreement, GDOT is 
partnering with the Georgia Regional Transportation Authority (GRTA) and the State Road 
and Tollway Authority (SRTA) to implement innovative strategies to alleviate congestion. 
The first phase of this program involved the conversion of HOV lanes to HOT lanes on I-
85, mentioned above. Future phases will add additional express lanes to major freeway 
facilities, enhance commuter bus service, and construct new Park and Ride lots. Aside 
from this program, GDOT is also undertaking a Radial Freeway Strategic Improvement 
Plan (RFSIP) to investigate the implementation of operational improvements, managed 
lanes, and capacity expansion on congested freeways, as well as to study how to 
increase transit mode-share.    

GDOT monitors traffic in the Atlanta Metropolitan Area in real-time through its 
Advanced Traffic Management System (ATMS), called Navigator. The Transportation 
Management Center (TMC), located in Atlanta, is the headquarters and information 
clearinghouse for Navigator. TMC staff support regional congestion and incident 
management through a three-phase process: 

Figure 1-2: Map of Atlanta Freeways 
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 Phase 1: Collect Information- TMC operators monitor the roadways and 
review real-time condition information from sensors deployed along 
regional interstates. Operators also gather information provided by 511 
users regarding traffic congestion and roadway incidents.  
 

 Phase 2: Confirm and Analyze Information- TMC operators confirm all 
incidents by identifying the problem, the cause, and the effect it is 
anticipated to have on the roadway. Based on their analysis, proper 
authorities, such as police or fire responders, are notified. 

 

 Phase 3: Communicate Information- TMC operators communicate 
information regarding congestion and incidents to travelers by posting 
relevant messages to regional CMS and updating the Navigator website 
and 511 telephone service.  

 

GDOT’s traffic management system integrates with traffic sensors, CCTVs, 
changeable message signs (CMS), ramp meters, weather stations, and Highway Advisory 
Radio (HAR). At the TMC, staff use the real-time data and CCTV feed to detect 
congestion and incidents. To minimize the disruption of traffic caused by lane-blocking 
incidents, TMC staff can dispatch Highway Emergency Response Operator (HERO) 
patrols. GDOT estimates that the implementation of HERO patrols through the TMC has 
reduced the average incident duration by 23 minutes and reduced yearly delay time by 3.2 
million hours during the peak commute (1). To facilitate information sharing and 
coordinated responses, the central TMC in downtown Atlanta is also linked to seven 
regional Transportation Control Centers, as well as the City of Atlanta and the 
Metropolitan Atlanta Rapid Transit Authority (MARTA).  

SENSORS 

In the Atlanta region, GDOT collects data from over 2,100 roadway sensors, which 
include a mix of video detection sensors and radar detectors. Both of these types of 
sensors consist of single devices that monitor traffic across multiple lanes. The majority of 
active sensors are monitoring freeway lanes, with some limited coverage of conventional 
highways. Sensors in the active network are manufactured by four different vendors, as 
shown in Table 1-1. 

Table 1-1: GDOT Sensor Network Summary 

Vendor Sensor Type Percentage of GDOT Network 

Traficon Video 80% 

Autoscope Video 8% 

NavTeq Radar 8% 

EIS Radar 4% 

 

The make and model of the sensor dictates the type of data that it collects and the 
frequency at which data is retrieved from the device (and thus, the level of aggregation of 
the data). Traficon video detection cameras make up approximately 80% of GDOT’s 
active detection network. In Georgia, these sensors monitor flow, occupancy, and speed, 
and report data to a centralized location every 20 seconds.  Autoscope video detection 
sensors make up another 8% of the GDOT detection network. These cameras also 
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monitor flow, occupancy, and speed but, in the Atlanta region, report it to a centralized 
location every 75 seconds. The remainder of the detection network is composed of radar 
detectors, which also report aggregated flows, occupancies, and speeds. NavTeq radar 
detectors make up 8% of GDOT’s active detection network and report data every 1-
minute. Finally, EIS’s RTMS radar detectors make up 4% of GDOT’s active detection 
network and report data every 20 seconds. In addition to the aggregated flow, occupancy, 
and speed data, these sensors also report on the percentage of passenger cars versus 
truck traffic.  

  In general, the different types of sensors are divided up by freeway. Figure 1-3 
shows the location of active mainline sensors in the GDOT network, broken down by 
manufacturer. The predominant sensors,  the video detector manufactured by Traficon, 
exclusively cover the I-285 ring road, I-75, the I-75/I-85 Downtown Connector, and I-575. 
Traficon sensors also monitor GA-400 north of the ring road and the majority of I-85, and 
share coverage of I-20 with NavTeq radar detectors. In most of the network, Traficon 
sensors are placed with a very dense spacing of about one-third of a mile. Autoscope 
cameras monitor a small portion of I-85 near the Hartsfield-Jackson Atlanta International 
Airport with a spacing comparable to that of the Traficon cameras. In addition to sharing 
coverage of I-20 within the ring road with the Traficon sensors, NavTeq radar detectors 
exclusively monitor I-20 outside of the ring road, I-675, GA-400 inside of the ring road, and 
GA-316. NavTeq detectors are spaced approximately 1 mile apart. Finally, RTMS radar 
detectors exclusively monitor US-78, GA-141, and GA-166.  

All sensors in the network are capable of monitoring multiple lanes. For this 
reason, the same sensors that monitor mainline lanes can be configured to also monitor 
HOV lanes. Figure 1-4 shows the sensors that monitor HOV lanes. The monitored HOV 
lanes are I-75 inside of the ring road (Traficon), the I-75/I-85 Downtown Connector 
(Traficon), I-85 north of the I-75 split (Traficon), and I-20 from east of downtown Atlanta to 
east of the ring road. Along each of these freeway segments, HOV lanes are operational 
seven days a week, 24 hours a day along both directions of travel.  

 In addition to the real-time detection network, GDOT staff use approximately 500 
CCTV cameras positioned at approximately 1-mile intervals on most major interstates 
around Atlanta to monitor conditions.  
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Figure 1-3:  GDOT Traffic Detector Network 
 

 

Figure 1-4: GDOT Managed Lane Detector Network 
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DATA MANAGEMENT 

The primary data management system used in the Atlanta region is the Georgia 
DOT’s Navigator System. Navigator is an Advanced Traffic Management System (ATMS) 
that was initially deployed in metropolitan Atlanta in preparation for the 1996 Summer 
Olympic Games. Navigator collects traffic data from video and radar detectors in the field, 
automatically updates CMSs with travel time information, and controls ramp metering. It 
also pushes information to the public through a variety of outlets, including a traveler 
information website and a 511 telephone information service. In addition, Navigator data is 
used by several private sector companies who enhance and package the data for 
distribution to media outlets.  

The Navigator system is broken up into six subsystems (2): 

1. Field Data Acquisition Services 
2. Management Services 
3. Audio/Video Services 
4. System Services 
5. Geographical Information Services 
6. System Security Services 

The Field Data Acquisition subsystem is responsible for device communication 
and management, and consumes data from CMS, detector stations, ramp meters, a 
parking management system, and Highway Advisory Radio. The Management Services 
system helps TMC staff analyze data to determine conditions and develop response 
plans, and includes the Navigator Graphical User Interface, congestion and incident 
detection and management services, response plan management, and the historical 
logging of detector data. The Audio/Video subsystems lets TMC staff control CCTVs in the 
field as well as the display of information within the TMC. The System Services subsystem 
communicates speed information with GDOT’s Advanced Traveler Information System 
(ATIS) and logs system alarms. The GIS subsystem provides a graphical view of the 
roadway network and real-time data. The final subsystem provides system security.  

 The primary functions of Navigator are the monitoring of and the response to real-
time traffic conditions. As such, Navigator collects lane-specific volume, speed, and 
occupancy data in real-time from the disparate detector types at their respective sampling 
frequencies (for example, every 20 seconds for the Traficon cameras), and then stores 
the raw data in a database table for 30 minutes. This database table always contains the 
most recent 30-minute subset of collected data. An associated table contains 
configuration data (such as locations and detector types) for all of the devices that sent 
data within the past 30 minutes. Besides being accessible at the TMC, this raw data is 
also used to compute travel times on key routes, which are then automatically displayed 
on regional CMS as well as distributed through traveler information systems. The raw data 
is not processed or quality-controlled prior to being stored in the real-time data table. 

 Every fifteen minutes, the raw Navigator traffic data samples are aggregated up to 
lane-specific 15-minute volumes, average speeds, and average occupancies, and 
archived for each detector station.  The data is not filtered or quality-controlled prior to 
being archived. Many agencies and research institutions use this data set for performance 
measurement purposes; for example, the Georgia Regional Transportation Authority 
(GRTA), the Metropolitan Planning Organization for the Atlanta region, uses it to develop 
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its yearly Transportation AP Report, which tracks the performance of the region’s 
transportation system.  

 Aside from the traffic data, Navigator also maintains a historical log of incidents. 
When the TMC receives a call about a incident, TMC staff log it as a “potential” incident in 
Navigator, until it can be confirmed through a camera or multiple calls. Once the incident 
has been confirmed, its information is updated in Navigator to include the county, type of 
incident, and estimated duration. This incident information is archived and stored.  

SYSTEMS INTEGRATION  

For the purposes of this case study, data from GDOT’s Navigator system was 
integrated into PeMS, a developed archived data user service and travel time reliability 
monitoring system. This section briefly describes the steps involved in integrating the two 
systems. A more detailed account of the integration process and associated challenges is 
presented in the Use Case chapter of this document.  

PeMS is a traffic data collection, processing, and analysis tool that extracts 
information from real-time intelligent transportation systems (ITS), saves it permanently in 
a data warehouse, and presents it in various forms to users via the web. PeMS requires 
three types of information from the data source system (in this case study, Navigator), in 
order to report performance measures such as travel time reliability: 

 Metadata on the roadway linework of facilities being monitored 

 Metadata on the detection infrastructure, including the types of data collected 
and the locations of equipment 

 Real-time traffic data in a constant format at a constant frequency (such as 
every 30-seconds or every minute) 

PeMS acquired the first piece of required information- roadway linework and mile 
marker information- from OpenStreetMap, an open-source, user-generated mapping 
service.  

 PeMS acquired the second piece of required information- detection infrastructure 
metadata- directly from GDOT database tables at the beginning of the integration process. 
The Navigator data framework is based around two components: devices and detectors. 
Devices are the physical unit in the field (either the VDS or the radar detector) that collect 
the data.  Detectors represent the specific lanes from which data is being collected. Since 
all GDOT detectors are VDS or radar, detectors in the GDOT network are virtual, rather 
than physical, entities. To define devices and detectors, GDOT has database tables that 
are modified each time that field equipment is added, removed, or modified.  The PeMS 
framework consists of two similar entities: stations (parallel to devices) and detectors. 
Because of this similarity, the mapping of GDOT infrastructure into PeMS was relatively 
straightforward. Challenges related to consuming metadata from GDOT’s disparate 
detector types are described in the use case chapter.  

 PeMS continuously acquires the final piece of required information- real-time data- 
from GDOT database tables. As described in the Data Management section of this 
chapter, Navigator stores all of the raw data for the most recent 30-minute period in a 
database table. To obtain data, PeMS consumes and stores the entirety of this database 
table every five-minutes, and throws out any duplicate records. The Navigator raw data 
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table is copied into PeMS every five-minutes rather than every thirty-minutes to support 
the near-real time computation of travel times.  

 Two aspects of the Navigator framework presented major challenges for 
incorporating the traffic data into PeMS: 

1. The frequency of data reporting differs for different device types; and 
2. Many VDS device data samples are missing 

These challenges are further discussed in the Use Case chapter of this document.  

OTHER DATA SOURCES 

To deepen the case study analysis and explore alternative data sources, the project 
team acquired a parallel, probe traffic data set, provided by NavTeq. The data set covers 
the entirety of the I-285 ring road, and is reported by Traffic Message Channel (TMC) ID. 
The following data is reported every minute for each TMC ID: 

 Current travel time 

 Free-flow travel time 

 Current speed 

 Free-flow speed 

 Jam factor  

 Jam factor trend 

 Confidence 
 

The length of the TMC segments vary, but they are generally between 0.3 and 2 miles 
long. PeMS consumes the NavTeq data through a real-time data feed. While the 
computational methods and sources of the data are proprietary, the data is generally 
computed from a mixture of probe and radar data. When there is not sufficient real-time 
data to generate the reported measures, the data is also based on historical averages. 
The confidence interval reflects the amount of real-time data used in the computation. 
This data set is addressed in more detail in the use case section of this document. 

 
To enable investigation into the impact of the seven sources of congestion on travel 

time reliability, the research team also acquired event data (consisting of incident and lane 
closure data) collected by Navigator. The issues involved in preparing this dataset for use 
in analysis are detailed in the first use case. The results of the analysis into the impact of 
the sources of congestion on unreliability are discussed in the second use case.  

SUMMARY 

The Atlanta Metropolitan area offers the densest network of fixed point sensors of any 
of the five sites studied in this project, while presenting the challenges of adapting 
operational ATMS data for reliability monitoring. The site also provides the opportunity to 
analyze a third-party probe-based data set.  

REFERENCES 

[1] CMAQ: Advancing Mobility and Air Quality. FHWA Office of Planning, Environment, 
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2. Methodological Advancement 

OVERVIEW 

The methodological advancement of this case study builds upon methods established 
and validated in previous case studies. Two of the main themes of the case study 
validations are: (1) estimating the quantity and characteristics of the operating travel time 
regimes experienced by different facilities; and (2) calculating the impacts of the seven 
sources of non-recurrent congestion on travel time reliability.  

To estimate regimes, the San Diego case study grouped time periods with similar 
average travel time indices, within which travel time probability density functions were 
assembled. To refine the regime-estimation process, the Northern Virginia case study 
validated the use of multi-state normal density functions to model the multi-modal nature 
of travel time distributions for a particular facility and time of day. This approach has the 
advantage of providing a useful, traveler-centric output of the likelihood of congestion and 
the travel time variability under different congestion scenarios.  

With respect to non-recurrent congestion analysis, the San Diego and Lake Tahoe 
case studies focused on estimating probability density functions for travel times measured 
during instances of non-recurrent congestion. These distributions help distinguish 
between the natural travel time variability of a facility due to the complex interactions 
between demand and capacity, and the travel time variability during specific events.  

 The methodological goal of this case study is to fuse the previously-developed 
regime-estimation and non-recurrent congestion analysis methodologies by using multi-
state models to inform on the reliability impacts of non-recurrent congestion. Providing a 
way for agencies to link the travel time regimes that their facilities experience with the 
factors that cause them, such as incidents or special events, would allow them to better 
predict travel times when these events occur in real-time, as well as develop targeted 
projects to improve reliability over the long-term. The background and steps of this 
analysis are described in this chapter, with detailed results presented in Use Case 2.  

SITE DESCRIPTION 

The methodology was applied to the 
segment of southbound I-75 starting just 
north of the interchange with I-85 and ending 
just north of the I-20 interchange in 
downtown Atlanta. A map of this corridor is 
shown below. This corridor was selected for 
the following reasons: 

 Significant recurrent congestion 
during the AM and PM weekday 
peak periods 

 A high frequency of incidents 

 Proximity to special event venues, 
such as the Georgia Dome and 
Phillips Arena  

Figure 2-1: Downtown Connector Study Route 
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METHOD 

The method to develop the regimes and estimate the impacts of non-recurrent congestion 
events consists of three steps:  

1) Regime Characterization, to estimate the number and characteristics of each 
travel time regime measured along the facility;  

2) Data Fusion, to link travel times with the source active during their measurement, 
and; 

3) Seven Sources Analysis, to calculate the contributions of each source on each 
travel time regime.  

Regime Characterization  

The details of how to implement multi-state normal models for approximating travel 
time density functions are thoroughly described in the Methodology section of the 
Northern Virginia case study. With multistate models, the data set is modeled as a 
function of the probability of each state occurring and the parameters of each state. In 
generalized form, multistate models take the form of Equation 1, 
 

(1)                                                        

 
where T is a travel time,  is the travel time density function for the data set, K is 
the state number,  is the density function for travel times in the Kth state,  is the 

probability of the Kth state occurring, and  is the distribution parameters for the Kth 
state. For the multistate normal distribution,  is composed of the mean (μ) and the 
standard deviation (σ) of the state’s travel times.  
  
 More practically, if a three-state normal model provides the best fit to a set of travel 
times collected at the same time of day over multiple days, the first state can be 
considered the least congested state, the second state a more congested state, and the 
third state the most congested state. Each state is defined by a mean travel time and a 
standard deviation travel time, with the first state having the fastest mean travel time and 
the third state having the slowest mean travel time.  
 
 The development of a multi-state model consists of two steps: (1) identifying the 
optimal number of states to fit the data; and (2) calculating the parameters (probability of 
occurrence and mean and standard deviation travel times) to define each state. The 
methods for performing these tasks are described in the Northern Virginia case study. 

 In addition to providing the number of operating states and their parameters, the 
model also outputs, for each measured travel time, the percentage chance that it belongs 
within each state. By assigning each travel time to the state it is most likely to belong to, it 
is possible to derive a set of travel times that belong within each state. This output is used 
to drive the non-recurrent congestion reliability analysis, described in the following 
subsection.  

Data Fusion 

To test the methodology, the research team downloaded five-minute travel times 
measured on all non-holiday weekdays between September 9th, 2011 (the first day that 
PeMS was set up for data collection) and December 31st, 2011 from the reliability 
monitoring system. Due to drops in the data feed, there were many days of missing data 
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during the months of November and December. Each travel time was then manually 
tagged with the source active during its measurement, following the methodology used 
and described in the San Diego case study, and briefly summarized below. The following 
sources were included in the fusion process: 

1) Baseline. No source was active during the five-minute time period.  
 

2) Incident. Incident data was acquired from Georgia Tech’s Navigator event data 
archive. The challenges of quality-controlling the incident data set are described in 
the first use case of this document. The research team  ultimately associated 
incident travel times with the following types of events that were marked as 
blocking at least one lane in the incident data set: 

a. Accident/Crash 
b. Debris (all types) 
c. Fire/Vehicle 
d. Stall/Lane(s) Blocked 

In previous case studies, the research team assumed that incident impacts began 
at the start time of the incident and ended fifteen minutes after the incident closed, 
to allow for queue discharge.  However, because the incident durations seemed 
unusually long in this data set, for this study, it was assumed that incident impacts 
ended at the incident closure time.  

3) Weather. Hourly weather data was downloaded from the NOAA National Data 
Center and was measured at a weather station housed at Atlanta Hartsfield-
Jackson International Airport (located approximately 10 miles southwest of the 
study corridor). The research team assumed that weather impacts were incurred 
when greater than 1/10th of an inch of precipitation was measured during the hour. 
The Navigator event data set also documented instances of roadway flooding 
(through the incident type “Weather/Road Flooding”). Travel times measured 
during these events were also associated with this source.  
 

4) Special Events.  Special event data from the Georgia Dome and Philips Arena 
was collated manually from sport and event calendars. Determining when special 
events impact traffic is challenging, as the impact of the event depends on the type 
of event. Typically, event traffic impacts begin prior to the start time, and end after 
the event is over. However, while event start times are typically available, event 
end times are rarely explicit and have to be assumed. In this study, a travel time 
was tagged with “special event” if it occurred up to one hour before the event start 
time and in the hour following the estimated end time. 
 

5) Lane Closures. Lane closures were gathered from the Georgia Tech’s Navigator 
event data archive, which contained events marked as “Planned/Maintenance 
Activity”, “Planned/Construction”, and “Planned/Rolling Closure”. The research 
team tagged travel times with the lane closure source if a closure affecting at least 
one lane was active during the five-minute time period.  
 

In the San Diego case study, fluctuations in demand were also measured. In Atlanta, 
fluctuations in demand were not able to be analyzed due to the high quantity of missing 
data samples, which impacted the ability of the system to monitor traffic volumes (as 
explained in Use Case 1).  
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Seven Sources Analysis 

The model development process described above results in a set of travel times, 
each tagged with the non-recurrent congestion source active during their measurement, 
that are categorized according to the state that they belong to. From this it is possible to 
calculate two key measures to inform on the relationships between non-recurrent 
congestion and the travel time regimes: 

1. Within each state, the percentage of travel times measured during each 
source; and  

2. For each source, the percentage of its travel times that belong in each 
state.  

 
The use case section presents the results of these two measures for a freeway corridor in 
downtown Atlanta. It also visualizes the results through travel time histograms divided into 
states and color-coded according to the source active during the travel time’s 
measurement.  

 
RESULTS 

Results are presented in Use Case 2.  
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3. Use Case Analysis 

USE CASE 1: INTEGRATING ATMS DATA INTO A TRAVEL TIME RELIABILITY 
MONITORING SYSTEM 

Summary 

For this case study, data from GDOT’s Navigator ATMS system was brought into a 
travel time reliability monitoring system (PeMS) and archived to support the computation 
of historical and real-time travel times and reliability metrics. This case study was the 
project team’s first opportunity to use ATMS data, which is focused on real-time 
congestion and incident detection, for monitoring travel time reliability. To contrast with the 
previous case studies, the San Diego and Lake Tahoe sites relied primarily on data within 
PeMS that had already been quality-controlled and processed, and the Northern Virginia 
site leveraged data collected from an archived data user service at the University of 
Maryland.  In each of these cases, the data leveraged by the project team had already 
been processed to fill in any data holes and aggregated to  ensure a consistent granularity 
across all of the raw data samples. Because ATMS data is conventionally used only for 
real-time operations, the acceptable level of data quality is much lower than it is for the 
analysis of archived data. Conceptually, it is easier for TMC staff to identify gaps and 
errors in the real-time data, since they have access to other data sources such as CCTV 
cameras and reports from the field, than it is for analysts who are evaluating historical 
travel times and performance measures without the benefit of any other contextual 
information. Given the nature of the Atlanta data, initial case study efforts focused on the 
integration issues with consuming unprocessed, incomplete data from disparate sensor 
types and using it to compute travel time reliability. Encountered issues fell into two 
categories: (1) metadata integration, where GDOT device and detector information is 
transferred into PeMS; and (2) data integration, where real-time traffic data is consumed 
by PeMS, processed, cleaned, and stored, and ultimately used to measure travel times 
and reliability. The project team acquired metadata and traffic data through direct access 
to the relevant Navigator database tables. This use case describes the challenges of 
interpreting the information in the database tables and inputting it into PeMS. It also 
describes the process for interpreting the event data acquired from Georgia Tech from 
Navigator.  

Metadata Integration 

As described in the Monitoring System chapter, the data model for Navigator detection 
devices (devices containing multiple detectors) is very similar to the PeMS data model 
(stations containing multiple detectors). As such, the mapping between the two system 
models was trivial, and the primary metadata integration challenge was interpreting the 
fields and formats of the Navigator metadata database tables, and filtering out non-active 
infrastructure. Navigator defines devices and detectors in two separate database tables. 
The project team acquired complete copies of these database tables at the beginning of 
the integration project, and used them to generate the detection network for PeMS.  

The device database table contained 14,581 rows, with nearly all device IDs having 
multiple records corresponding to different version numbers (up to 14 for some devices). 
The version number appeared to be driven by “modified date” column, with the highest 
version numbers corresponding to the most recent modified date.  As such, the set of 
devices was reduced to a single record for each device ID with the highest version 
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number. This step reduced the number of devices to 4,633. After excluding those missing 
latitude and longitude information, which PeMS requires, 3,406 unique devices remained. 

The detector database table contained 40,496 records, which was filtered down to 
34,135 after excluding detectors associates with devices that had missing locations. Each 
detector was assigned a “lane_type”. PeMS assigns detectors to one of six possible lane 
types: (1) mainline; (2) HOV; (3) on-ramp; (4) off-ramp; (5) collector/distributor; and (6) 
freeway to freeway connector. When assessing the Navigator detector lane types, the 
project team noted a total of 21 possible categories. This high number is because 
Navigator, because of its operational nature, allows for the same type of lane to be 
identified in different ways. For example, in the detector database table, the lane types 
“Entrance Ramp”, “Entrance_ramp”, “Left_entrance_ramp”, “Right_entrance_lane”, 
“Right_entrance_ramp, are all used to denote on-ramp detectors. This required the 
development of a mapping structure to appropriate categorize Navigator detectors in 
PeMS, as shown in Table 3-1. In doing this, the project team noted that a large 
percentage of the devices that had no locations monitored “arterial” detectors. The 
research team hypothesizes that these devices were planned for deployment, but were 
not yet configured to report data into the system.  

Table 3-1: Mapping of Lane Types from Navigator to PeMS 

PeMS Lane Type Navigator Lane Type 

Mainline Mainline 
Through_lane 
Through_lanes 
Through-lanes 
THRU/THRU 
THRU/OFF-RAMP (THRU) 
THRU/ON-RAMP (THRU) 

HOV High Occupancy Vehicle 
Hov_lanes 
THRU/HOV 

On-Ramp Entrance Ramp 
Entrance_ramp 
Left_entrance_ramp 
Right_entrance_lane 
Right_entrance_ramp 

Off-ramp Exit Ramp 
Right_exit_lane 
Right_exit_ramp 

Collector/Distributor Collector/Distributor 

Freeway to Freeway Connector  Connecting Lanes 

N/A Arterial 
 

Using the above-structure, Navigator devices and detectors were mapped as stations 
and detectors in PeMS. This allowed for the step of the real-time data integration, 
described in the next subsection, to begin.  

Agency Data Integration 
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As described in the Monitoring System chapter, two characteristics of the GDOT 
detection network presented major data integration challenges for the case study: (1) 
variable sample rates across detectors; and (2) missing data samples for detectors and 
devices.  

Varying data sampling rates are problematic because PeMS assumes that all 
detectors within the same data feed report data at a constant, known frequency (for 
example, in the San Diego case study, this frequency is every 30 seconds). This 
assumption enables the accurate aggregation of raw data up to the five-minute level, from 
which travel times and other measures are then calculated. While all GDOT detectors 
report flow, occupancy, and speed, the frequency at which they report it varies. GDOT 
stores the most recent 30 minutes of data from each active detector in a database table. 
PeMS obtains real-time data from GDOT by copying over the GDOT raw database table 
every five minutes then eliminating duplicate records already acquired in previous five-
minute periods. An initial manual review of the database table showed a data reporting 
frequency of every 20 seconds, so this was the basis for aggregation up to the five-minute 
level. Through inspection of the aggregated data, however, it became evident that the 
frequency of data reporting varies by the vendor type.  Table 3-2 shows the observed 
reporting frequencies by vendor type.  

Table 3-2: Data Reporting Frequencies by Device Type 

Vendor Reporting Frequency 

Traficon 20 seconds 

Autoscope 75 seconds 

NavTeq 60 seconds 

EIS 20 seconds 
 

As such, while the majority of GDOT detectors report data every 20 seconds, a 
significant number do not, and thus were not being aggregated correctly in PeMS. The 
research team decided that the best way the handle this issue was to change the process 
for extracting data from the GDOT raw database table. Instead of extracting data from al 
detectors in a single feed, the problem could be solved by establishing three data feeds, 
each with their own aggregation routines, to obtain data from all detectors that report at 
the same frequency (20 seconds, 60 seconds, and 75 seconds).  

The second issue identified by the research team was that a significant number of 
expected data samples were missing. For example, since Traficon detectors are 
configured to send data every 20 seconds, and GDOT stores the most recent 30 minutes 
of data from each detector, the research team expected to see 90 samples for each 
Traficon detector in each copy of the database table. Instead, many 20 second time 
periods were missing data for one or more detectors. For many of the VDS detectors, 
almost no samples were reported during the nighttime hours. From this, the research 
team concluded that some of the detectors were not able to monitor traffic in the dark. 
Many samples were also missing during the daytime hours. This, combined with the fact 
that none of the data samples ever reported zero volume, made it clear that the detectors 
send no data sample if they detect no vehicles during the time interval. This data reporting 
scheme is problematic because monitoring systems need to be able to distinguish 
between when the detector or data feed is broken (requiring data imputation to fill in the 
hole) and when no vehicles traveled past the location during the time interval (requiring a 
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recording of zero volume in the database).  With PeMS, the GDOT detector reporting 
framework causes two main problems. 

1. PeMS performs detector diagnostics at the end of every day. If more fewer 
than 60% of expected data samples are received, then the detector is deemed 
to be broken and all of its data is imputed; 

2. PeMS performs imputation for missing data samples in real-time. If the cause 
of the missing sample is that there were no vehicles at the location over the 
time period, then the imputation results in an over-counting of volumes.  

In the Atlanta site, the first issue was deemed minimal because PeMS only runs the 
detector diagnostics on samples collected between the hours of 5:00 AM and 9:00 PM. 
Since the majority of missing samples occur outside of these hours (in the middle of the 
night), very few detectors sent less than 60% of expected samples during the diagnostic 
hours. The second issue, however, was deemed more serious, because it means that 
volumes are over-estimated and speeds are estimated from unnecessary amounts of 
imputed data.  The ideal, permanent solution to mitigate both issues would be to change 
the way that the field equipment interacts with the data collection system, to ensure that 
data samples are sent even when no traffic is measured. This change would need to be 
made at the device level. However, because this was a case study validation effort and 
not a procured monitoring system for GDOT, the team decided that the following solution 
would be more practical: 

1. Turn off real-time imputation to allow missing data samples 
2. Calculate five-minute volumes by summing up the non-missing raw data 

samples 
3. Calculate five-minutes speeds by taking the flow-weighted average of the non-

missing raw data samples 
4. Compute travel times from all detectors with non-missing five-minute travel 

times samples along a route.  

The end result of this solution is that the volume-based performance measures (such as 
vehicle-miles-travelled and vehicle-hours-of-delay) may be under-reported, but speed-
based measures are more accurate than they would be under the PeMS traditional real-
time imputation regime.  

Event Data Integration  

 To enable seven sources analysis, the research team acquired a database dump 
of all Navigator events (primarily incidents and lane closures) from September through 
December 2011 from Georgia Tech. The data was delivered in an excel spreadsheet in a 
format summarized in Table 3-3. It contained 21,540 event records summarizing 
Navigator events within the Atlanta metropolitan region.  

Table 3-3: Event Data Format 

Column Name Description Example 

1 ID Unique ID 244835 

2 Primary Road Freeway number I-75 

3 Dir Direction of travel N 

4 MM Mile marker 228 

5 Cross Cross-street Jonesboro Rd 
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6 County County Clayton 

7 Start Event start date and time 09/01/2011 01:00 

8 End Event end date and time 09/02/2011 06:15 

9 Type Type of event Accident/Crash 

10 Status Status of event  Terminated 

11 Blockage 2 Number of lanes blocked 
 

The breakdown of events by type in the data set is shown in Table 3-4 (grouped and 
summed into event types in similar categories).  

Table 3-4: Event Data Set by Event Type 

Type Number 

Accident (Crash, Haz Mat Spill, Other) 3,311 

Debris (Animal, Mattress, Tire, Tree, Other) 1,896 

Fire (Structural, Vehicle, Other) 237 

Infrastructure (Bridge Closure, Downed Utility Lines, Gas/Water Main 
Break, Road Failure) 

120 

Planned (Accident Investigation, Construction, Emergency Roadwork, 
Maintenance Activity, Rolling Closure, Special Event) 

4,499 

Signals (Bulb Out, Flashing, Not Cycling) 638 

Stall (Lane(s) Blocked, No Lanes Blocked) 10,690 

Unplanned (Live Animal, Policy Activity, Presence Detection , Rolling 
Closure) 

55 

Weather (Dense Fog, Icy Condition, Road Flooding) 99 
 

The data was assessed with an eye towards its ability to detail incidents and lane 
closures on a ten-mile segment of southbound I-75, for use in analyzing the impacts of the 
seven sources of congestion on travel time variability on this corridor (see the 
Methodological Advancement Chapter for more details). In doing this, the team noted the 
following data set characteristics that complicated the assignment of incidents and lane 
closures to measured travel times:  

1. The same freeway was given different names in the “Primary Road” column; 
2. Mileposts were missing from some events; 
3. There were inconsistencies between the number of lanes blocked in the event 

type column and the blockage column; and 
4. Durations for many of the events were longer than expected for the event type 

  With respect to the first issue, the segment of I-75 studied in the document was 
given the following different names in the data set: 75/85, I-75, 75/85 SB, I-75/85, and 75. 
As such, the research team had to ensure that all of the possible freeway names were 
evaluated and narrowed down by milepost so as not to miss any events on the study 
route.  The second issue was dealt with by manually mapping the given cross-street to 
determine if the location was on the study segment. The third issue related to the 
numerous events of type “Stall, Lane(s) Blocked” and “Stall, No Lanes Blocked” where the 
degree of lane blockage was contradicted by the number in the “Blockage” column. In 
these cases, the research team used the event type description to determine if there was 
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lane blockage. The fourth issue regards event durations; in many cases, the event 
duration computed from the start and end times seemed longer than would be expected 
for an event of that type. For example, it was common to see events of type “Stall, No 
Lanes Blocked” last for longer than 3 hours. Without any other source of data to 
reference, the research team simply had to accept the reported durations, and note it as a 
potential inaccuracy in the analysis.  

Conclusions 

Because most metropolitan areas are already equipped with ATMS detection and 
software systems, ATMS data is a likely source of information for urban travel time 
reliability monitoring systems. The integration of ATMS data into a travel time reliability 
monitoring system presents challenges in ensuring data quality and quantity. Practitioners 
may encounter the following issues when acquiring and integrating ATMS data for 
reliability monitoring purposes: 

1. Sensor metadata and event data with missing required attributes, such as 
location 

2. Sensor metadata and event data with unstandardized naming classification 
3. Data at miscellaneous sampling rates 
4. Missing data samples 

When required sensor information is missing, the only alternative to obtaining the 
information from the field is to discard the sensor from the reliability monitoring system. 
For unstandardized classifications, the best alternative is to manually translate ATMS 
terminology into the monitoring system framework, prioritizing the translation of mainline 
and managed lane detectors. The data variability issues are more challenging to deal 
with, and are best solved on a permanent level by changing the way that the field 
equipment communicates with the ATMS system, to ensure that all the information 
needed for historical travel time monitoring is required.  

USE CASE 2: DETERMINING TRAVEL TIME REGIMES AND THE IMPACT OF THE 
SEVEN SOURCES OF CONGESTION  

Summary 

The Northern Virginia case study analyses developed methodologies for modeling the 
multi-modal nature of travel time distributions to determine the operating regimes of a 
facility. The San Diego case study analyses validated ways to evaluate the impact of the 
seven sources of congestion on travel time variability. This use case seeks to combine 
these two methods to identify the impacts of the seven sources of congestion on the 
different travel time regimes that a facility experiences. The methodology that drives this 
analysis and a description of the study route is presented in the Methodological 
Advancements chapter of this document. This use case write-up documents the results of 
performing the regime characterization, data fusion, and seven sources analysis steps on 
a ten-mile study route through Downtown Atlanta during the AM, midday, and PM 
weekday periods.  

Results 

Regime Characterization  
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The first step in the analysis is to identify the number of modes, or regimes, in the 
travel time distribution. In this study, the data set consisted of five-minute travel times 
measured on non-holiday weekdays between September 9th, 2011 and December 31st, 
2011. To appropriately identify the number of operating regimes along the study route, the 
travel time data set was grouped by similar typical operating conditions (defined by the 
mean travel time) and time of day into the following categories: 

 AM Peak, 7:20 AM – 9:20 AM, (mean travel times exceeding 14 minutes) 

 Midday, 9:30 AM – 4:00 PM, (mean travel times less than 13 minutes) 

 PM Peak, 5:00 PM – 6:20 PM (mean travel times exceeding 18 minutes) 

An algorithm in R was used to identify the optimal number of multi-modal normal 
regimes to model each of the three travel time datasets. Results showed that the AM and 
PM peak time periods were best modeled with two normal distributions and that the 
midday period was best modeled with three normal distributions.  Figure 3-1, Figure 3-2, 
and Figure 3-3 show a histogram of the travel time distribution for each time period, as 
well as the probability density functions for each of the regimes (the dashed lines) and the 
overall mixed-normal density function (the solid line).  Table 3-5 summarizes the regime 
parameters (probability of occurrence and mean travel time) by time period.  

  
Figure 3-1: AM Multi-state Normal PDFs Figure 3-2: Midday Multi-state PDFs 
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Table 3-5: Regime Parameters by Time Period 

 

In the AM peak, each regime (uncongested and congested) occurs about half of 
the time. The mean of the first, uncongested regime is 12 minutes, with little travel time 
variability in the distribution. The mean of the congested regime is 16 minutes, and the 
distribution of travel times is wider.  

The midday period has three regimes. The uncongested regime happens 52% of 
the time, the slightly congested regime happens 44% of the time, and the congested 
regime happens only 4% of the time (this small percentage makes the regime invisible in 
Figure 3-2.). The mean of the uncongested regime is 11 minutes (free-flow), the mean of 
the slightly congested regime is 14 minutes, and the mean of the most congested regime 
is 18 minutes. 

The PM period is characterized by two regimes. The congested regime happens 
92% of the time, with a mean travel time of 20 minutes (almost double the free-flow travel 
time). The very congested regime happens only 7% of the time, but has a mean travel 
time of 30 minutes (almost three times the free-flow travel time).  

Data Fusion 

 Probability (%) Mean Travel Time (mins) 

 State 1 State 2 State 3 State 1 State 2 State 3 

AM 47% 53% -- 12 16 -- 

Midday 52% 44% 4% 11 14 18 

PM 92% 7% -- 20 30  

Figure 3-3: PM Multi-state Normal PDFs 
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In the data fusion step, the seven sources data described in the Methodological 
Advancements chapter was fused with the five-minute travel times. Table 3-6 summarizes 
the number and percentage of travel time samples by source within each time period. 
Special events only occurred during the PM time period. Conversely, lane closures only 
occurred during the AM and midday time periods. Incidents made up a similar percentage 
of the data set in all three time periods.  

Table 3-6: Five-minute Travel Time Samples by Time Period and Source 

 AM Midday PM 

Baseline 297 (60%) 1,254 (71%) 413 (78%) 

Incident 77 (16%) 286 (16%) 73 (14%) 

Weather 115 (23%) 119 (7%) 36 (9%) 

Special Event 0 (0%) 0 (0%) 10 (2%) 

Lane Closure 7 (2%) 115 (6%) 0 (0%) 

Total 496 1774 532 

 

Seven Sources Analysis 

The final step in the analysis is to assess the contributions of the sources of 
congestion to each travel time regime.  Figure 3-5, Figure 3-4, and Figure 3-6 illustrate the 
breakdown of travel times by source within each state. Table 3-7, Table 3-8, and Table 
3-9 summarize each state’s parameters, the percentages of each state’s travel times 
tagged with each source, and the percentage of each source’s travel times that occur 
within each state.  

 During the AM peak, state 2 has a four-minute higher mean travel times than state 
1, and also contains more variability (a standard deviation of 3 minutes versus less than a 
minute).  Incident travel times are seen in both states, but incidents are three times more 
likely to result in the most congested state.  Weather events, in contrast, are found more 
frequently in the uncongested state (58%) than the congested state (42%). There were 
not very many lane closure samples to evaluate, so lane closures do not appear to be a 
driving factor of AM peak congestion and travel time variability on this route.  State 2 
contains a significant number of baseline travel times (51%), indicating that something 
other than incidents, weather, and lane closures is causing delay and unreliability on this 
corridor during the morning commute. 

 The midday peak has three states. The most congested state, which occurs only 
4% of the time, is composed of around one-third weather-influenced travel times, one-fifth 
incident-influenced travel times, and one-tenth lane-closure travel times, and the 
remainder baseline travel times. The fact that the less congested states contain a 
significant proportion of the congestion-influenced travel times indicates that only the most 
severe instances of the sources result in a reduction in capacity below the midday 
demand levels.  

 During the PM peak, the congested state that happens 93% of the time (state 1) 
contains nearly all of the congestion source travel times. However, this state has a wide 
distribution of travel times, and Figure 3-6 shows that many of these incident- and 
weather-influenced travel times occupy the right-most part of the state 1 travel time 
distribution. The very congested second state during the PM peak is composed of one-
third weather-influenced travel times, one-tenth incident influenced travel times, and the 
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rest baseline travel times, indicating that this most unreliable state is caused by some 
other influence. 

 

 

 

 

 

 

 

 

 



  SHRP2 L02: Atlanta Case Study 
 

 29 

 

 

 

 

 

 

Figure 3-5: AM Peak Travel Times by Source 

Figure 3-4: Midday Travel Times by Source 
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Table 3-7: Source Contributions to AM Peak Regimes 

 State 1 State 2 

Parameters 

Probability 47% 53% 

Mean 12 minutes 16 minutes 

Standard Deviation 0.7 minutes 3 minutes 

Percentage of State Travel Times by Source 

Baseline 67% 51% 

Incident 7% 26% 

Weather 24% 22% 

Special Event 0% 0% 

Lane Closure 2% 1% 

Percentage of Source Travel Times by State 

Baseline 62% 38% 

Incident 25% 75% 

Weather 58% 42% 

Special Event 0% 0% 

Lane Closure 71% 29% 
 

 

 

Figure 3-6: PM Peak Travel Times by Source 
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Table 3-8: Source Contributions to Midday Regimes 

 State 1 State 2 State 3 

Parameters  

Probability 52% 44% 4% 

Mean 11 minutes 14 minutes 18 minutes 

Standard Deviation 0.2 minutes 3 minutes 4 minutes 

Percentage of State Travel Times by Source  

Baseline 75% 67% 32% 

Incident 10% 24% 20% 

Weather 6% 6% 35% 

Special Event 0% 0% 0% 

Lane Closure 9% 3% 13% 

Percentage of Source Travel Times by State  

Baseline 59% 40% 1% 

Incident 36% 62% 2% 

Weather 54% 34% 2% 

Special Event 0% 0% 0% 

Lane Closure 78% 17% 4% 

 

Table 3-9: Source Contributions to PM Peak Regimes 

 State 1 State 2 

Parameters 

Probability 93% 7% 

Mean 20 minutes 30 minutes 

Standard Deviation 4 minutes 4 minutes 

Percentage of State Travel Times by Source 

Baseline 79% 59% 

Incident 14% 7% 

Weather 5% 34% 

Special Event 2% 0% 

Lane Closure 0% 0% 

Percentage of Source Travel Times by State 

Baseline 96% 4% 

Incident 97% 3% 

Weather 72% 28% 

Special Event 100% 0% 

Lane Closure 0% 0% 

 

Conclusions 

By combining the regime-estimation and seven sources analysis methodologies 
used in previous case studies, this application showed that it is possible to characterize 
the impact of the sources of non-recurrent congestion on the different travel time states 
that a facility experiences. On the study route of I-75 into Downtown Atlanta, the analysis 
showed that a driving factor other than weather, incidents, lane closures, and special 
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events is a leading factor of the high and unreliable travel times that make up the right-
most portion of the travel time distribution. This factor may be fluctuations in demand and 
capacity due to a bottleneck; these factors were not measurable at this case study site. 
On this route, weather is the source that, when it occurs, most frequently drives the travel 
time regime into the most congested state.  
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USE CASE 3: QUANTIFYING AND EXPLAINING THE STATISTICAL DIFFERENCE 
BETWEEN MULTIPLE SOURCES OF VEHICLE SPEED DATA. 

Summary 

This use case identifies issues associated with the integration of data feeds from 
multiple sources. Speed measurements from Traficon video detectors and Navteq probe 
vehicle runs are compared. For each of these technologies, the data comes from a 10-
mile segment of I-285 in Atlanta, Georgia where peak period congestion is observed on 
weekdays. Some preprocessing was necessary to translate the data sets into a common 
format which could be easily compared. At that point, correlations between pairs of 
detectors of each type at the same location were computed. A possible source of 
difference in the measurements, the distance between each pair of compared detectors, 
was analyzed and found to be moderately significant.  

Data from multiple sources, if properly understood, can be aggregated to provide a 
rich set of performance monitoring information. Multiple data sources add redundancy to 
the system, preventing a data blackout in the event that one of the data feeds goes down. 
Multiple data sources also facilitate the cross-validation of detectors, providing an 
additional way to identify malfunctioning equipment. However, if the additional data 
sources are integrated incorrectly, they can conflict with each other, decreasing the 
accuracy of the monitoring system in unpredictable ways. 

The observed traffic data is the fundamental driver of the performance measures 
computed by a travel time reliability monitoring system. While the underlying traffic model 
also influences the performance measures, its influence is typically static. For example, a 
particular methodology for computing travel times may be consistently biased towards 
overestimating travel times. A systematic bias like this can be recognized and accounted 
for. On the other hand, the effects of misconfigured data sources can change as the 
incoming data changes. Understanding the peculiarities of data from different sources is 
critical since the observed data feeds directly into the measures computed by the 
monitoring system. 

Users 

This use case is applicable to all users of travel time reliability monitoring systems, 
particularly those systems that integrate data from multiple sources or technologies. It 
provides practical guidance on how to properly compare traffic measurements from 
multiple data sources. The data comparison techniques presented here are the necessary 
first steps to transform raw detector data from multiple sources into aggregated traffic 
information. This information will give important context to users of travel time reliability 
monitoring systems, improving their understanding of the performance measures they 
compute.  

Information technology professionals responsible for the data integration and 
preprocessing tasks necessary to build and maintain a travel time reliability monitoring 
system will also benefit directly from this use case. This use case provides guidance on 
the steps necessary to compare data from two different sources, a necessary initial step in 
data integration. Understanding these issues can also help system managers more easily 
troubleshoot systems whose computed performance measures are suspect. For example, 
data feeds that are aggregated incorrectly can be compared using the techniques 
presented in this use case as part of a troubleshooting routine. 
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This use case is also valuable to transportation professionals interested in 
exploring new data sources. GPS-based probe data is increasing in availability and offers 
a roadway monitoring solution that is rich, with speed and position measurements taken 
from actual vehicles throughout their trip. Probe data is also appealing because it does not 
require any ongoing maintenance of detection equipment. With this technology, there is 
no roadway-based detection hardware; the data collection infrastructure resides entirely 
within the vehicles themselves. When compared with conventional infrastructure-based 
sensors, which only record roadway information at discrete locations and must be 
regularly maintained, probe data can be very appealing. This use case provides guidance 
on how probe data compares with more traditional infrastructure-based data sources. 

Data Characteristics 

 This use case compares two types of traffic data: (1) speed data from vehicle 
probes, provided by Navteq, and (2) speed data from Traficon video detectors. The 
vehicle probe data comes from GPS chips residing within individual vehicles, directly 
measuring their speed and location. In contrast, the Traficon data comes from video 
cameras installed at fixed locations along the roadway, measuring speed, volume, and 
density. Data from infrastructure-based sensors such as these (and loop detectors) is 
currently much more common than probe data. For this reason, many users of travel time 
reliability monitoring systems conceptualize the data they see primarily in terms of fixed-
infrastructure sensors. The rising availability of probe data for transportation system 
monitoring makes the Navteq probe data a desirable data set to compare with fixed-
infrastructure data. 

 Because the video data comes from fixed-infrastructure sensors and the probe 
data comes from in-vehicle sensors, they require different types of network configurations 
to relate them to the roadway. The video data is organized by device, with each device 
applying to a single location on the roadway. Data from each device then corresponds to 
traffic at that point. The probe data, on the other hand, is organized directly by location 
through Traffic Message Channel (TMC) paths. Each TMC path represents a stretch of 
roadway in a single direction, and is explicitly defined by a starting and ending postmile. 
The lengths and locations of the TMC paths are irregular, and there are gaps between 
TMC paths. 

The Navteq probe data differentiates between mainline speeds and speeds on 
managed lanes such as HOV or HOT lanes, although it does not provide mainline speeds 
disaggregated by lane. A data point is calculated for each TMC path roughly every two 
minutes (0.5 Hz). This is a lower sampling rate than many other types of detectors, 
however since the measurements are taken directly from actual vehicles (representing 
ground truth conditions), they are generally considered more accurate, making sampling 
frequency less important. 

 The Traficon video detector data closely resembles traditional infrastructure-based 
data such as that from loop detectors. Each video detector is assigned to a specific 
postmile and lane on the roadway, and its measurements apply directly to that point 
location. Each video detector directly reports occupancy, speed, and flow at a maximum 
frequency of once every 20 seconds (3 Hz). This frequency is comparable to that of most 
loop detectors.  

Sites 
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A 10-mile stretch of I-285 around Atlanta (known locally as “The Perimeter”) was 
chosen for this study for several reasons. As discussed in Chapter 1, I-285 is covered by 
both Traficon video detectors and Navteq probe data, and this location has good data 
availability for both. The heavy commute traffic on I-285 leads to strong peak period 
congestion and a range of congestion levels, another reason this site was chosen. I-285 
carries the largest volume of traffic of any Atlanta freeway, providing the metropolitan area 
access to major interstates I-20, I-75, and I-85, which lead to several residential suburbs.  

Data covering both the Northbound and Southbound directions of travel was 
examined. The study area spanned postmiles 25 to 35 in the northbound direction, and 45 
to 55 in the southbound direction. Although these postmile ranges differ, they represent 
the same stretch of roadway (see Figure 3-8). The study area extends from the Belvedere 
Park area at its southern end to the I-85 interchange at its northern end. During the time 
period studied, free-flow speed was measured around 70 mph. The typical weekday flow 
was between 80,000 and 90,000 vehicles/day in the northbound direction and 
approximately 100,000 vehicles/day in the southbound direction. 

In the Northbound direction, 3.9 of the 10 miles in the study area are covered by 8 
TMC paths, with an average TMC path length of 0.5 miles. Also in the Northbound 
direction are 24 working Traficon detectors, 7 of which lie within a TMC path. In the 
Southbound direction, 5.3 of the 10 miles in the study area are covered by 8 TMC paths, 
with an average TMC path length of 0.7 miles. Also in the Southbound direction are 19 
working Traficon detectors, 12 of which lie within a TMC path (see Figure 3-7). 

One reason this site was chosen is its congestion patterns. AM peak period 
congestion was seen in the Northbound direction between 6 and 9 AM. PM period 
congestion was seen in the Southbound direction between 4 and 7 PM. In both directions, 
the congestion was most pronounced on Tuesdays, Wednesdays, and Thursdays. 5-
minute speed measurements were commonly observed in both directions as low as 15 
mph.  

Methods 

The comparison of the probe and video speed data begins with the procurement of 
that data. PeMS began collecting live Traficon video detector data in the Atlanta region on 
September 9, 2011. Data from this initial date through December 23, 2011 (the beginning 
of a gap in availability) was obtained for the 51 total video detectors in the study area from 
PeMS. All available data for each detector was included, weekends in addition to 
weekdays, in order to compare the data sets across a range of conditions. PeMS stores 
Traficon video detector data at 5-minute resolution at the finest, which is the level of 
aggregation used in the comparison. It was immediately observed that 2 northbound and 
6 southbound video detectors were not reporting any data and they were discarded. 
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 PeMS began archiving Navteq probe data in the Atlanta region on September 18, 
2011. All available data from this date through December 23, 2011 was obtained from all 
17 TMC paths in the study area. Each probe data point is the result of Navteq’s 
aggregation of many GPS measurements from multiple vehicles into a single speed value 
for a particular TMC path. PeMS stores these aggregated speed measurements at their 
finest provided resolution, which is one data point roughly every two minutes (0.5 Hz).  

In order to properly compare the two data sets it is immediately necessary to 
convert them to a common time standard. As obtained from PeMS, the video data and 
probe data have different time ranges and different sampling frequencies. A perl script 
was written to fix the time range of all data sets to extend between September 9, 2011 
and December 23, 2011, with empty cells for any time points without data. This same 
script fixed the probe data to the same 5-minute resolution of the video data, the coarser 
of the two data resolutions. This was done by dividing the predefined time range into 5-
minute windows and averaging all probe data points that fell inside each window (see 
Figure 3-9). As discussed in Chapter 1: Data Management GDOT’s Navigator system also 
aggregates Traficon data into 15-minute periods. 

Each 5-minute Traficon video speed measurement is also accompanied by a value 
representing the degree to which that data point represents an actual roadway 

Figure 3-8: Study Area on I-285 

Figure 3-7: Locations of Navteq TMC 
paths (longitudinal black lines) and 

Traficon video detectors (perpendicular 
black lines) 
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measurement, called “percent observed”. Certain time periods might have a low percent 
observed due to errors in the detector or feed. In those cases, PeMS fills in the missing 
data according to certain estimation algorithms. To keep the comparison focused solely 
on the data generated by the sensors, only 100% observed data points were included. 
After this filtering, between 40% and 50% of 5-minute periods contained data for most 
Traficon video detectors. By comparison, the Navteq probe data sets all contained data 
for 20% of all 5-minute periods, and all TMC paths followed the same pattern of data 
availability. This indicates the few probe data outages were caused by system issues.  

At this point, the video and probe data is all in the same temporal frame of 
reference. The comparison begins by identifying the pairs of video detectors and TMC 
paths that apply to the same stretch of roadway. Since video detectors are fixed to a point 
and TMC paths span a length of roadway, each video detector can have no more than 
one associated TMC path while each TMC path can have many matching video detectors 
(see Figure 3-8). There were 7 pairs of video detectors and TMC paths in the northbound 
direction and 12 in the southbound direction. 

With video and probe detectors paired by location, their speed measurements can 
be plotted and compared visually. Figure 4 shows video detector and probe speeds at the 
same location on I-285 in the Northbound direction over three consecutive weekdays. 
Both data sets seem to agree closely on the speed profile during the congested period. 

 Figure 3-9: Common temporal aggregation of comparison data 
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However, the Navteq probe data is clearly capped at an artificial ceiling around 55 mph. 
This means that the probe data is only valid for times when speeds were below 55 mph.  

To maintain the integrity of the 
comparison, all 5-minute periods during 
which any TMC path had a reported speed 
of 55 mph were identified as artificial and 
discarded. Critically, the corresponding time 
period in the paired video detector was also 
discarded in order to maintain the same 
temporal reference in both data sets. Figure 
3-11 plots the results of this filtering on the 
time range and data from Figure 3-10, 
showing all of the time points from Figure 
3-10 during which both data sets contained 
directly observed data. The removal of data 
from certain time periods creates 
discontinuities in the time basis of the data, 
so each point is now identified by its index 
in the data set. This procedure effectively 
removes all non-congested time periods 
from each comparison. This means that the 
fundamental basis of comparison of these 
data sets is the observed speeds during 
congested periods. 

Many techniques are available for 
numerically computing the similarity of two 
data sets. In this case, the Pearson 
correlation coefficient was computed 
between each pair of processed data sets. 
The correlation coefficient is defined as the 
covariance of the two data sets (a measure 
of their linear dependence) normalized by 
the product of their standard deviations. 
Covariance is a useful measure of the 
degree to which two data sets increase and 
decrease together, but its magnitude is 
difficult to interpret. Normalizing the 
covariance by the product of the standard 
deviations allows correlations to be 
compared across pairs of data sets. 
Correlation coefficients were computed 
between each pair of processed data sets in 
R to determine the degree to which the 
speed measurements from each source 
agree. 
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Figure 3-10: Comparison of speeds from 
video (black) and probe (gray) sources 
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Upon inspection of Figure 3-5, the probe data at this location appears to lag 
slightly behind the video detector data. This lag can be quantified by computing the cross-
correlation of the two data sets. To demonstrate this, the cross-correlation for the data 
shown in Figure 3-5 was computed. It can be seen in Figure 3-6 that the peak correlation 
occurs at a lag of -1. The unshifted data, as shown in Figure 3-5 has a correlation of 0.80. 
When the probe data is shifted earlier by one index position, as recommended by the 
cross-correlation function, the correlation of the two data sets improves to 0.93 (see 
Figure 3-6). This technique can be used to calibrate sensor measurements. 
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Figure 3-11: Comparison of speeds from video (black) and probe (gray) sources 
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Figure 3-12: Cross-correlation of data from Figure 3-11 
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Figure 3-13: Data from Figure 3-11 after shifting probe data 
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I-285 Northbound Results 

 Correlations in speed measurements from the northbound direction of travel were 
strong, ranging from 0.75 to 0.87. Of the 7 video detector / TMC path pairs, 5 (71%) had 
correlations exceeding 0.8. The poorest correlated pair was located at the northern end of 
the study segment, near the North Hills Shopping Center. The best correlation was seen 
between the longest TMC path and the detector located near its middle, close to the 
Decatur Road exit. 

I-285 Southbound Results 

 Correlations in speed measurements from the southbound direction of travel were 
slightly weaker than in the northbound direction, ranging from 0.69 to 0.87. The range of 
correlations was greater in this direction of travel, perhaps because of the larger number 
of pairs. Of the 12 video detector / TMC path pairs, only one (8%) had a correlation 
exceeding 0.8, although 10 (83%) exceeded 0.75, a good correlation. The poorest 
correlated pair was located on the southern edge of the longest TMC path, near Midvale 
Road. The best correlation was seen between the TMC path and detector located near 
the U.S. 78 and I-285 junction. 

Discussion 

Although the video detector speeds and the probe speeds correlate well with each 
other, a better understanding of the source of the differences in the measurements was 
sought. Some part of the difference is likely due to random error, but another part could be 
related to the locations of the video detectors and TMC paths. Since each detector that 
sat along any part of a TMC path was paired with that TMC path, one source of difference 
could be related to the location of the video detector within its paired TMC path. It seems 
reasonable to assume that a TMC path paired with a video detector located at its midpoint 
would correlate better than a TMC path paired with a video detector near the TMC path’s 
edge. 

To investigate this, the distance between each video detector and the midpoint of 
its paired TMC path was calculated. These distances ranged from 0.02 to 0.27 miles in 
the northbound direction and from 0.01 to 0.72 miles in the southbound direction. 
Scatterplots were made between these distances and the correlation of the corresponding 
video detector and TMC path for each freeway direction (see Figure 3-11). We would 
expect each pair’s correlation to increase as the distance decreases, and we indeed 
appear to see this negative relationship in the southbound direction (R2 = 0.55). No linear 
relationship between correlation and distance is apparent in the northbound direction. 
When plotting distances and correlations from both directions of traffic together, the same 
approximate linear relationship that was seen in the southbound direction reemerges, with 
a slightly lower correlation coefficient (R2 = 0.43). This indicates that part of the difference 
in the video detector and probe data speed measurements may be due to the distance 
between the video detector and the midpoint of the TMC path. 
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 Another way to compare two sets of speed measurements would be to simply 
compute the difference between them at each time point. Figure 3-13 shows the 
difference in speed measurements for the same pair of detectors and time range as in 
Figure 3-10 and Figure 3-11. Speed measurements from this pair of detectors matched 
well, with a correlation coefficient of 0.85. Figure 3-11 shows both speed profiles in 
general agreement. However, when the difference in speed measurements is plotted in 
Figure 3-13, we see that the measurements often differ by as much as 20 mph during 
individual 5-minute time periods. This indicates that measurements from two types of 
detectors may not agree at fine time resolutions, even if the detectors are properly 
configured and in good working order. That the speed difference appears to fluctuate 
around zero indicates further that this pair is still a good match. Since the detectors agree 
on the general duration and speed profile of congestion and their difference is centered 
around zero, their correlation will likely improve as the data is rolled up into coarser levels 
of temporal aggregation. 

 

Conclusion 

 This use case explored the steps necessary to compare speed measurements 
from two different types of detectors. Differences in sampling rate (3 Hz vs. 0.5 Hz), 
configuration basis (detector-based vs. TMC path-based), and data availability range were 
addressed by aggregating speed measurements at the finest available grain to 5-minute 
windows. Time points during which a video detector was less than 100% observed, or a 
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Figure 3-14: Scatter plots comparing correlation of speed measurements with 
distance between detectors 
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Figure 3-15: Difference in Speed Measurements (video – probe) 
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TMC path reported the 55 mph speed ceiling were discarded. With this preprocessing 
carried out, the speed values of detectors from the same roadway segment were 
compared by computing their correlations. It was seen that the video detector speeds 
correlate well with probe-based speeds at the same location, particularly in terms of the 
magnitude of speed drops and their profile. Thus, these disparate detector types can be 
used together to determine the time, duration, and extent of congestion. Additional 
analysis revealed that some part of the differences between the two types of 
measurements may be due to the distance of the video detector from the midpoint of its 
matched TMC path. Finally, the hazards of comparing data from individual 5-minute 
periods was seen by plotting the difference between two data sets.  
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4. LESSONS LEARNED 

OVERVIEW 

This case study showed that, with proper quality control and integration measures, 
ATMS data can be used for travel time reliability monitoring, including the linking of travel 
time variability with the sources of non-recurrent congestion. It showed that ATMS 
systems can be a source of traffic data, as well as a source of information for informing on 
the relationship between travel time reliability and the seven sources of congestion. In 
evaluating the similarity between ATMS and third-party probe data, it also sheds light into 
points of consideration for integrating different data sources into a travel time reliability 
monitoring systems. The remainder of this chapter describes lessons learned within each 
of these areas.  

SYSTEMS INTEGRATION 

 The key systems integration finding from this case study is that ATMS data 
requires significant evaluation and quality-control processing before it can be used to 
compute travel times and inform on the causes of unreliability. Four major issues were 
noted with ATMS data and metadata: 

1. Sensor metadata and event data may not contain locational information at the 
accuracy required for travel time computation and analysis;  

2. Descriptive information for sensor metadata and event data can be free-form and 
non-standardized; 

3. Traffic data may not be received at constant sampling rates; and 
4. Expected data samples may be missing 

Due to the short-term nature of this case study, these issues were handled internally 
by the research team by changing the properties of the data collection feeds and 
discarding sensors and events that did not have sufficient information to allow for 
interpretation. For staff executing a long-term deployment of a reliability monitoring 
system, these issues highlight the need for a thorough understanding of the ATMS data 
model and processing steps, as well as a good relationship with ATMS staff so that 
needed information can be acquired and problems resolved.  

METHODOLOGICAL ADVANCEMENT 

The methodology work of this case study linked the regime-estimation work 
developed in the Northern Virginia case study site with the seven sources analysis 
developed for the San Diego site. At the San Diego study site, analysis showed incidents 
and weather events to be leading drivers of travel time variability. On the Atlanta corridor, 
however, while incidents, weather, lane closures, and special events all contributed to the 
slowest and most variable travel time regimes, a large portion of travel time variability was 
not attributable to any of the measured seven sources. This indicates that, particularly for 
urban corridors that experience a lot of recurrent congestion, the harder-to-measure 
sources of fluctuations in demand and inadequate base capacity are likely leading drivers 
of travel time variability.  

PROBE DATA COMPARISON 
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 This case study provided the first opportunity to compare speed data reported by 
infrastructure-based sensors with speeds obtained from a third-party data provider. It 
showed that there are three main points of consideration for integrating different data 
sources into a reliability monitoring system: (1) standardizing the data sampling rate (in 
this case study, 3 Hz vs. 0.5 Hz); (2) standardizing the spatial aggregation of the data (in 
this case study, detector-based vs. TMC path-based); and (3) handling instances of 
missing or low quality data samples among the sources.  These issues must be deal with 
before disparate data sources can be fused together for reliability monitoring. Following 
the necessary integration steps and the discarding of any artificial speed bounds in the 
third-party data set (in this case study, third-party speed were capped at 55 mph) the 
comparison analysis showed that the agency-owned video detection speeds correlated 
well with the corresponding probe-based speeds. However, results showed that speed 
differences between data sources may increase with the distance between the mid-point 
of the TMC path and the infrastructure detector.   

 


